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Abstract

We propose an efficient, fully implicit, nonlinear solver for the Beltrami grid generation equation. The Beltrami equa-
tion is obtained using Harmonic map theory, and therefore the existence and uniqueness of a solution is guaranteed. The
nonlinear solver strategy is based on Newton–Krylov methods, preconditioned here with a multigrid-based method for
scalability. Numerical experiments performed for both grid adaptation and grid alignment are presented and demonstrate
optimal scaling under grid refinement. We therefore conclude that such a fully nonlinear approach is indeed feasible and
efficient.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Grid generation; Newton–Krylov; Fully implicit methods; Multigrid; Beltrami equation; Harmonic maps; Moving mesh
1. Introduction

In the numerical simulation of complex physical phenomena, the crucial requirement is predictability, i.e.,
that the simulation results remain faithful to the actual physical processes. Accordingly, the generation and
accumulation of numerical error during the simulation is of special concern, since it introduces distortions that
fundamentally alter the fidelity of the simulation. Errors resulting from a lack of spatial resolution are partic-
ularly deleterious. However, over-resolving is computationally expensive.

Adaptive grids attempt to provide sufficient resolution where needed while minimizing the computational
cost of the simulation. Our emphasis is on moving grid methods (also known as r-refinement methods) in
logically structured grids, where grid points are able to move to follow the solution (e.g., see [1–13]). The grid
positions are determined from a suitable grid evolution equation. While many grid evolution equations have
been proposed in the literature [14–17], here we focus on Harmonic maps [3,4,6,9–11], which are desirable
because, under certain conditions, they guarantee the existence and uniqueness of the grid mapping.

However, one drawback of Harmonic function theory is that the resulting grid evolution equation
is generally very nonlinear and stiff. Furthermore, multiple-time-scale physics models for which spatial
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adaptation is necessary are typically very stiff as well. For such systems, implicit temporal schemes are pre-
ferred for efficiency, as they allow one to use time steps comparable to the dynamical timescale of interest
in the problem at hand [18]. However, when coupled to a grid evolution equation, such large implicit time
steps may not be advantageous from an accuracy standpoint unless both grid and physics equations are solved
in a coupled manner.

The coupled nonlinear solution of such physics-grid systems represents, however, a formidable numerical
challenge. At the heart of the matter is to demonstrate that developing a scalable, efficient nonlinear algorithm
to solve the grid evolution equation alone is indeed possible. In fact, while the theory and applications of
variational grid generation has become increasingly more sophisticated [14–17], the development of scalable
and efficient nonlinear solvers for the resulting nonlinear elliptic equations (MMPDEs) has been lagging. Most
authors describe some sort of iterative relaxation scheme, combined with some pseudo-transient treatment of
the grid governing equation [9,11,13,19], with very slow convergence properties. Recently, modern nonlinear
multigrid methods have been applied to elliptic grid generation PDEs for complex geometries with some suc-
cess [20–22]. However, to the authors� knowledge, no such advanced grid generation solver has been developed
in the context of implicit methods for moving meshes in multidimensional geometries, where grid equation and
physics model are intimately coupled (it is worth mentioning that implicit methods have been employed in the
past to solve the coupled grid-physics equation in 1D moving grids in many physical applications of interest;
see e.g., [8,23–26]).

In this paper, we explore a fully implicit, nonlinear solver for the grid equation, as an integral part of an
implicit approach to moving meshes. The coupling of this nonlinear grid solver with a suitable physics model
is left for future work. We base our strategy on Newton–Krylov methods [27], which are ideally suited for this
task owing to their robustness and the possibility of preconditioning. Specifically, we present in this paper a
scalable and robust preconditioning strategy for the numerical generation of Harmonic maps, based on
multigrid methods. We demonstrate its performance in two distinct applications, namely, grid adaptation
to a scalar field and grid alignment to a vector field. However, it is noteworthy that the approach outlined
here can readily be used for the more general purpose of grid generation for complex domains [4,14,19],
and therefore the results outlined here may also impact that community.

The rest of the discussion in this paper is organized as follows. We introduce the Newton–Krylov solver
engine in Section 2. The Harmonic map theory and its applications to grid generation, as well as the specific
form of the inverse Beltrami equation (IBE) used in this work, are outlined in Section 3. The spatial discre-
tization of the IBE is detailed in Section 4. The multigrid preconditioning strategy, which is the cornerstone
of the algorithm, is discussed in Section 5. Finally, the results of the numerical experiments are presented in
Section 6, and we conclude in Section 7.
2. Newton–Krylov methods

We proceed to give a brief introduction to Newton–Krylov methods (NK). The motivated reader can find
extensive discussions on this approach elsewhere [27]. Newton–Krylov methods solve the nonlinear system
G(x) = 0 iteratively by solving successive linear systems of the form:
oG

ox

����
k

dxk ¼ �GðxkÞ;
with xk+1 = xk + dxk. Nonlinear convergence is achieved when
GðxkÞk k2 < �a þ �r Gðx0Þk k2 ¼ �t; ð1Þ
where i Æ i2 is the ‘2-norm (Euclidean norm), �a = N · 10�15 (with N the total number of degrees of freedom) is
an absolute tolerance to avoid converging below roundoff, �r is the Newton relative convergence tolerance (set
to 10�4 in this work), and G(x0) is the initial residual.

Such linear systems are solved iteratively with Krylov methods, which only require matrix–vector products
to proceed. Because the linear system matrix is a Jacobian matrix, such matrix–vector products can be imple-
mented Jacobian-free using the Gateaux derivative:
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oG

ox

����
k

v ¼ lim
�!0

Gðxk þ �vÞ �GðxkÞ
�

; ð2Þ
where in practice a small but finite � is employed [27]. Thus, the evaluation of the Jacobian–vector product
only requires the function evaluation G(xk + �v), and there is no need to form or store the Jacobian matrix.

An inexact Newton method [28] is used to adjust the convergence tolerance of the Krylov method at every
Newton iteration according to the size of the current Newton residual, as follows:
Jkdxk þGðxkÞk k2 < fk GðxkÞk k2; ð3Þ
where fk is the inexact Newton parameter and Jk ¼ oG
ox
jk is the Jacobian matrix. Thus, the convergence tole-

rance of the Krylov method is loose when the Newton state vector xk is far from the nonlinear solution, but
tightens as xk approaches the solution. Hence, the linear solver works the hardest when the Newton state
vector is closest to the nonlinear root. Superlinear convergence rates of the inexact Newton method are
possible if the sequence of fk is chosen properly [27]. Here, we employ the same prescription as in [29]:
fAk ¼ c
GðxkÞk k2
Gðxk�1Þk k2

� �a

;

fBk ¼ min½fmax;maxðfAk ; cf
a
k�1Þ�;

fk ¼ min fmax;max fBk ; c
�t

GðxkÞk k2

� �� �
;

with a = 1.5, c = 0.9, and fmax = 0.8. The convergence tolerance �t is defined in Eq. (1). In this prescription,
the first step ensures superlinear convergence (for a > 1), the second avoids volatile decreases in fk, and the last
avoids oversolving in the last Newton iteration. We also use a quadratic line-search backtracking algorithm
[27] for added robustness of the nonlinear solver.

A further advantage of Krylov methods is that they can be preconditioned by considering the alternate (but
equivalent) systems JkP�1

k P kdxk ¼ �Gk (right preconditioning) or P�1
k J kdxk ¼ �P�1

k Gk (left preconditioning).
Such preconditioning step can be straightforwardly and efficiently implemented in the Krylov algorithm as
two consecutive matrix–vector products.

A crucial feature of preconditioning is that, while it can substantially improve the convergence properties of
the Krylov iteration if P�1

k � J�1
k , it does not alter the solution of the Jacobian system upon convergence

(because the solution dxk of the preconditioned system is the same as that of the original system). Therefore,
one can explore suitable approximations in the preconditioner for efficiency purposes without compromising
the accuracy of the final result.

This paper concentrates on the development of a suitable (scalable, robust) preconditioning strategy for the
solution of the grid generation equation. Right preconditioning is favored here, because the right-hand side of
the Jacobian system Gk (which is the measure of nonlinear convergence) is unaffected by the preconditioner. In
practice, right preconditioning is implemented in two steps, namely, a linear solve JkP�1

k y ¼ �Gk, and a pos-
teriori application of the preconditioner to find dxk ¼ P�1

k y. We use GMRES as the Krylov method of choice
for its robustness in non-symmetric, indefinite systems, in anticipation that the grid generation equation may
be coupled with a physical system of interest. However, given the effectiveness of the preconditioner strategy
developed here (Section 6), the choice of the Krylov method is not very relevant from the efficiency standpoint.

The form of the grid generation equation of choice is the subject of the next section.

3. Grid generation using Harmonic maps

Harmonic maps as a suitable grid generation strategy were first proposed by Dvinsky [3], and later explored
by many authors [3,4,6,9–11]. The fundamental advantage that Harmonic map theory features over other grid
generation strategies is that it guarantees, under certain conditions and in two dimensions, the existence and
uniqueness of a mapping solution to the grid generator equations (see [30,31] for a discussion of the singularity
of Harmonic maps in three dimensions). Furthermore, Harmonic grid generation has been shown to be
parametrization-independent [19], namely, that the resulting grid in physical space is independent of the choice
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of parametrization for the physical domain. The implication is that one can solve for the grid mapping be-
tween the logical and the parametric space, without involving the physical domain, and that the result will
be independent of the parametrization. We proceed to give a brief introduction to Harmonic map theory.
The interested reader should refer to [3,4,14,19] for further details.

Let us first define Harmonic maps [32]. Let P and L be Riemannian manifolds with boundaries oP and oL

and local coordinates x = (x1,x2,x3) and n = (n1,n2,n3) respectively [for clarity, one could consider P as a
region in physical space, and L as a region in logical (or natural) space]. Let pij be the contravariant metric
tensor in the coordinates x, and lmn the covariant metric tensor in the coordinates n. The energy density
for a map x : L ´ P is defined as:
eðn; xÞ ¼ 1

2
pijðxÞlabðnÞ

ona

oxi
onb

oxj
; ð4Þ
where summation is intended on repeated indices unless otherwise specified. A total energy E(n) is defined
from the energy density as:
EðnÞ ¼ 1

2

Z
P
dx

ffiffiffi
p

p
eðn; xÞ ¼ 1

2

Z
P
dx

ffiffiffi
p

p
pijðxÞlabðnÞ

ona

oxi
onb

oxj
; ð5Þ
where p = det{pij} = 1/det{pij}. The map x is said to be Harmonic if it is of class C2, and is a critical point of E
[32,3]. The corresponding Euler–Lagrange equation that defines the extremal of the energy (and thus the Har-
monic map) is
r � ffiffiffi
p

p
p
$ �rnd

� �
þ Cd

abrna � ð ffiffiffi
p

p
p
$Þ � rnb ¼ 0; ð6Þ
where Cd
ab is the Christoffel symbol of the second kind, given by
Cd
ab ¼

1

2
ldn

olna
oxb

þ olnb
oxa

� olab
oxn

� �
.

Equation (6) is of the Laplace–Beltrami type.
Existence and uniqueness of Harmonic maps are established by the following theorems [33,34]:

Hamilton–Schoen–Yau (HSY) Theorem. Let P with metric pij and L with metric lij be two Riemannian manifolds

with boundaries oP and oL, and let / : P ´ L be a diffeomorphism. For any map f : P ´ L such that f|o P = /|oP,
we define E(f) = �Pidfi2dx. The mapping f is Harmonic if it is an extremal of E.

Theorem. If the curvature of L is non-positive, and oL is convex (with respect to the metric lab) then there exists a

unique Harmonic map f : P ´ L such that f is an homotopy equivalent to /. In other words, one can deform f to /
by constructing a continuous family of maps gt : P ´ L, t 2 [0,1], such that g0(x) = /(x), g1(x) = f(x), and
gt(x) = /(x), "x 2 oP, t 2 [0,1].

In particular, a solution is guaranteed if one chooses a ‘‘flat’’ Euclidean space for the logical space. In this
case, Cd

ab ¼ 0, and the Beltrami grid-generator equation reads:
r � ffiffiffi
p

p
p
$ �rnd

� �
¼ 0; d ¼ 1; . . . ; n. ð7Þ
This equation provides a solution for the mapping n(x). However, in most applications of interest, the map-
ping x(n) is of interest. This requires inverting Eq. (7), and is the subject of the discussion in the next
section.

The fundamental interest of Harmonic functional theory in regards to grid generation is that, as Dvinsky
points out [3], there is freedom in the selection of the physical space metric tensor, pij. The only conditions to
be required of pij is that it be symmetric positive definite. In fact, one can choose suitable forms of such tensor
to adapt to particular features in the domain [3], to adapt to a given scalar function (e.g., a measure of the
numerical error) [4], or to align the grid with a given vector field [4]. In the numerical results section (Section
6), we will demonstrate the performance of the solver for both adaptation and alignment.



L. Chacón, G. Lapenta / Journal of Computational Physics 212 (2006) 703–717 707
3.1. Inverse Beltrami equation (IBE)

In reviewing the literature, one finds as many equivalent formulations of the inverse Beltrami equation – to
solve for x(n) – as practitioners. However, some of them are remarkably complex and ill-conditioned from the
numerical standpoint (e.g., see [3,4,14]). Here, we proceed to derive a very simple form of the inverse Beltrami
equation that numerical experiments will prove very convenient from the standpoint of multigrid methods.

We first realize that Eq. (7) is just the divergence of a vector in physical space. It is well-known that such
divergence can always be written in logical space as [14]:
r � A ¼ 1

J
oðJAiÞ
oni

;

where Ai = A Æ $ni and J is the Jacobian factor of the transformation x(n). Using this formula with
A ¼ ffiffiffi

p
p

p
$ �rnd, we find trivially
r � ffiffiffi
p

p
p
$ �rnd

� �
¼ 1

J
o

oni
J

ffiffiffi
p

p rni � p$ �rnd
� �

.

Defining p̂id ¼ Jrni � ð ffiffiffi
p

p
p
$Þ � rnd, we finally arrive at the compact inverse equation
op̂id

oni
¼ 0; d ¼ 1; . . . ; n. ð8Þ
Similarly compact formulations can be found in [19,9,10]. To finalize the derivation of the IBE, we note that
the normal vectors $nk can be found from the tangential vectors ox/oni as [14]:
rnk ¼ �ijk
2J

ox

oni
� ox

onj
; ð9Þ
where �ijk is the Levi–Civita antisymmetric tensor. If sources of the form described in Eq. (6) are to be
considered, the IBE generalizes straightforwardly as
op̂id

oni
þ Cd

abp̂
ab ¼ 0; d ¼ 1; . . . ; n.
In order to complete the derivation of the IBE, we need to specify suitable boundary conditions. Following
[4], the natural boundary condition on a surface bounded by ni that is compatible with the minimization of the
grid energy variational principle (Eq. (5)) is
p̂ij ¼ J
ffiffiffi
p

p rni � p$ �rnj ¼ 0; i 6¼ j. ð10Þ

Obtaining an inverse formulation of this boundary condition is straightforward using Eq. (9). In the case
where p

$
is diagonal (as in pure adaptivity applications), the natural boundary condition simplifies to gij =

$ni Æ $nj = 0, i 6¼ j, where gij is the contravariant metric tensor between the logical and the physical domains.
In this case, the inversion is trivial, since gij = 0 implies gij ¼ ox

oni
� ox
onj

¼ 0; i 6¼ j, because the latter is the inverse
of the former (i.e., if off-diagonal terms in gij are zero, then so are those of gij). At this point, the formulation of
the IBE is complete. We now proceed to discuss its discrete representation.

4. Spatial discretization of IBE

The conservative form of the IBE proposed in Eq. (8) is remarkably compact and concise. However, the
interest is not only academic, since the conservative formulation lends itself to a compact discretization in
multi-dimensions that features the right properties for a classical multigrid treatment, namely, the existence
of off-the-shelf smoothing techniques based on point Jacobi or Gauss–Seidel iterative methods. This is
demonstrated by numerical experiment later in this section.

In what follows, we specialize the discussion to two dimensions, with x = [x(n1,n2),y(n1,n2)]. Taking equa-
tion d = 1 in Eq. (8) as an example, the IBE reads
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op̂11

on1
þ op̂21

on2
¼ 0;
where p̂ij ¼ Jrni � P
$
�rnj, P

$
ðxÞ ¼ ffiffiffi

p
p

p
$
, J ¼ ð ox

on1
oy
on2

� ox
on2

oy
on1
Þ, and, following Eq. (9):
rn1 ¼ 1

J
oy

on2
;� ox

on2

� �
; rn2 ¼ 1

J
� oy

on1
;
ox

on1

� �
.

Therefore
p̂11 ¼ � 1

J
P 11 oy

on2

� �2

� 2P 12 ox

on2
oy

on2
þ P 22 ox

on2

� �2
" #

;

p̂12 ¼ � 1

J
P 11 oy

on2
oy

on1
� P 12 ox

on1
oy

on2
þ ox

on2
oy

on1

� �
þ P 22 ox

on2
ox

on1

� �
;

p̂22 ¼ � 1

J
P 11 oy

on1

� �2

� 2P 12 ox

on1
oy

on2
þ P 22 ox

on1

� �2
" #

.

A finite volume discretization of the IBE reads
p̂11iþ1=2;j � p̂11i�1=2;j

Dn1
þ
p̂12i;jþ1=2 � p̂12i;j�1=2

Dn2
¼ 0;
where, as an example
p̂11iþ1=2;j ¼ � 1

J iþ1=2;j
P 11 oy

on2

� �2

� 2P 12 ox

on2
oy

on2
þ P 22 ox

on2

� �2
" #

iþ1=2;j
and so on. The final step is to discretize terms of the form o

on1

���
iþ1=2;j

and o

on2

���
iþ1=2;j

, and similarly at the face

j + 1/2. This is done in the usual finite-volume manner, which we exemplify below:
ox

on1

����
iþ1=2;j

¼ xiþ1;j � xi;j
Dn1

;

ox

on2

����
iþ1=2;j

¼ 1

2

xiþ1;jþ1 � xiþ1;j�1

2Dn2
þ xi;jþ1 � xi;j�1

2Dn2

� �
.

The discretization is now complete, and results in a compact 9-point stencil. Such compact stencil support is
essential to ensure good numerical behavior of the ensuing algebraic equations. In particular, it results in a
diagonally dominant formulation, which is advantageous in a multigrid setting due to the effectiveness of
off-the-shelf smoothers such as weighed Jacobi or Gauss–Seidel [35].

We demonstrate that this is the case for the proposed discretization of the IBE by finding the spectral radius
of the damped Jacobi iteration matrix SkðxÞ ¼ ðI � xD�1

k J kÞ, where Jk is the Jacobian resulting from the dis-
cretization above (for the double-vortex grid-alignment problem in Section 6.2), Dk is its block-diagonal (with
2 · 2 blocks corresponding to the two coupled grid equations in 2D), and x is the damping parameter. The
undamped iteration matrix Sk(x = 1) governs the rate of decay of the error in the solution of the system
Jkx = b when a stationary Jacobi iteration of the form Dkx

m+1 = (Dk � Jk)x
m + b is employed [35]. If

q[Sk(x = 1)] < 1, the Jacobi iteration is convergent; furthermore, the iterative method can be turned into a
proper smoother by choosing x < 1 [35]. Fig. 1 depicts the eigenvalue spectrum |r| of S0(x) for several
x 6 1, demonstrating that q[S0(x)] < 1, and hence implying that the discretization above has the smoothing
property.

The implementation details of a multigrid preconditioner that exploits such smoothing property is the sub-
ject of the next section.
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Fig. 1. Plot of the eigenvalues of the stationary iteration matrix S0ðxÞ ¼ ðI � xD�1
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for the double-vortex grid-alignment problem (Section 6.2).
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5. Preconditioning strategy

While multigrid methods are well-known for being very sensitive to the nature of the problem at hand
(mostly due to the difficulty in finding adequate smoothers), they have been shown in many instances
[29,36–39] to be ideally suited for the preconditioner stage of a Krylov method. In fact, fairly crude multigrid
implementations have succeeded in delivering optimal Krylov convergence rates under grid refinement
[29,36–39]. The fundamental aspect of a successful multigrid method is the existence of an effective smoother.
In many applications, this is a statement of diagonal dominance, i.e., if the discrete formulation results in a
diagonal-dominant matrix, simple stationary iterative techniques such as weighed Jacobi or Gauss–Seidel will
be successful as smoothers [35]. It is important to note that our concern here is to capture enough of the MG
technology to obtain a successful preconditioner, with success measured in terms of the scalability of the
outer Krylov iteration. Accordingly, we are not bound by traditional MG theory, and suitable approxima-
tions that simplify the MG implementation (such as using low-order restriction and prolongation interpola-
tions) are allowed [29,36–39].

The preconditioner step aims to cheaply approximate the inverse of the Jacobian matrix. This implies that
the IBE equation above [Eq. (8)] must be linearized before MG is to be applied. Given the description of the
discretization in Section 4, it is clear that this is no simple task. However, one can trivially do this using the
Gateaux derivative in Eq. (2) every time the MG algorithm requires forming the residual. We term this a
matrix-light MG implementation, because only the diagonal (or block diagonal in system of PDEs) of the
Jacobian needs to be formed and stored, for smoothing purposes. Such diagonal is found in a Jacobian-free
fashion using the Gateaux derivative, taking advantage of efficient colored-grid methods [40,41]. In structured
grids, these methods exploit the node decoupling in discrete stencils characteristic of finite-volume/finite-
difference schemes. Decoupled nodes are assigned the same color (e.g., red-black coloring in a 5-point stencil
discretization of the Laplacian operator). Matrix elements corresponding to same-color nodes can be found in
a single matrix–vector product. In this manner, only as many matrix–vector products as colors in a grid are
needed to form the full diagonal. In 2D, four colors are needed to decouple a 9-point stencil, which in turn
implies that only four Jacobian–vector products are required to form the complete diagonal. This approach
has the fundamental advantages of reusing the nonlinear function evaluation, and avoiding its explicit linear-
ization (which in turn allows one to reuse the algorithm for arbitrary adaptivity tensors p

$
, regardless of their

complexity). The coarse operators are formed by re-discretization, instead of using a Galerkin procedure. This
allows further reuse of the nonlinear function evaluation for all levels in the MG algorithm. It should be noted
that the IBE system of equations in Eq. (8), with the boundary conditions as expressed in Eq. (10), is tightly
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coupled. Therefore, one necessarily needs to solve them coupled, which implies that a system MG solver is
required.

In our MG implementation, we employ a single V(5,5) cycle, smoothed with weighed block Jacobi with
a weight factor x = 0.8. Piece-wise constant interpolation is used in the restriction and prolongation steps
[36–38]. The coarsest grid level is a 16 · 16 grid. The smoother is also employed as the coarse grid solver.

A fundamental aspect of the MG implementation is the coarsening of the adaptivity tensor, pij(x). This is
particularly relevant in instances where pij is localized in space, which is common when pij contains an estimate
of numerical truncation error [42–44], or is specified for the grid to adapt to a localized feature [3]. In such
cases, a simple evaluation of pij at the coarse locations is not sufficient, as the coarse grids may miss the feature
entirely. This is dealt with here as follows. In coarser grids, we define an average adaptivity tensor Æpijæ, in a
finite volume sense, as follows:
hpijiXc
¼ 1

V c

Z
Xc

dV pijðxÞ ¼ 1

V c

Z
Xc

dn1 dn2 J ½xðn1; n2Þ�pij½xðn1; n2Þ�;
where Xc is a given coarse logical control volume, and V c ¼
R
Xc
J dn1 dn2 is its physical volume. While this

averaging procedure tends to decrease the magnitude of the tensor as the grid is coarsened, it successfully
transfers information of localized features in the fine grid to coarser meshes, thereby producing an effective
MG algorithm. Numerical proof is provided in Section 6.

The integral is performed numerically by first finding x(n1,n2) at the vertices of the logical control volume
using the current fine-grid solution of the mapping, and then reconstructing the mapping within such volume
by a bilinear interpolation of x(n1,n2). We call such reconstructed solution x̂ðn1; n2Þ. Finally, the integral in Xc

is discretized as
Z
Xc

dn1 dn2 Jp
ij½xðn1; n2Þ� �

Xnp
n;m¼1

dn1dn2½Jpij�x̂mn ;
where x̂mn ¼ x̂ðn1m; n2nÞ, ni l = ni min + (l � 1)dni, dni = Dcni/np, Dcni is the coarse grid logical spacing in the
i-direction, and np is the number of points to consider for the integral inside Xc. Typically, we let np increase
as the grid gets coarser, to capture local features of pij in coarse grids: np = 1 for the finest grid (i.e., a single-
point evaluation), and np = np + 1 per coarsening step.

Such average adaptivity tensor Æpijæ is employed instead of the original pij in the discrete equations for the
evaluation of residuals in coarse grid levels. The performance of the MG preconditioner is discussed in the
following section.
6. Numerical results

We proceed to demonstrate the algorithm in two distinct applications: grid adaptivity and grid align-
ment. The former demonstrates the effectiveness of the algorithm in solving the IBE for adaptation to a
given scalar function, while the latter demonstrates the effectiveness in aligning the grid with a given vector
field.

We choose rectangular domains for both the logical and the physical domains. This is not a fundamental
limitation, since, as stated in Section 3, Harmonic grid generation can be applied to a suitable parametrization
of the physical domain, and such parametric space is rectangular in many cases of interest (e.g., (r,h) for polar
domains, (r,h,U) for spherical domains, etc.). For the examples below, the initial guess for the nonlinear
iteration is the identity mapping (i.e., a Cartesian grid).

6.1. Grid adaptivity

Grid adaptation to a scalar monitor function w(x, t) is achieved by setting pij = dij/w(x,t), where dij is the
Kronecker delta. In this special case, the Harmonic function theory results in Winslow�s variable diffusion
method [45], and the IBE reads



Table
Grid c

Grid

32 · 32
64 · 64
128 · 1

Fig. 2.
(a) act
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o

oni

Jgid

w

� �
¼ 0; d ¼ 1; 2. ð11Þ
The monitor function may be used to adapt to a feature [3], to numerical error [42–44], or to generate a geo-
metry [4]. Equation (11) will concentrate the grid in regions, where w is large, and rarefy the grid in regions,
where w is small [4].

Equation (11) is an equidistribution principle. Assuming gij � gii � Oð1Þ, then it follows that the IBE will
preserve the ratio w/J approximately constant. This, in turn, implies that the ratio of the maximum to the
minimum Jacobian (cell volume) values, Jmax/Jmin is approximately determined by wmax/wmin. This consider-
ation is important in order to construct well-behaved scalar monitor functions.

The MG-preconditioned Newton–Krylov solver is tested with a Gaussian annulus wðrÞ ¼ 1þ b
exp½� r2 � r20

�� ��=r2�, with r0 = 0.4, r = 0.1, and r the cylindrical radius, with origin at the center of the Cartesian
domain 0 6 x,y 6 1. This monitor function mimics a sharp front. By the argument in the previous paragraph,
it is clear that the coefficient b approximately determines the maximum to minimum volume (Jacobian) ratio.
Here, b = 9 is chosen to limit the Jacobian ratio to Jmax/Jmin � 10.

The scalability of the solver under grid refinement is demonstrated in Table 1, where it is shown that the
CPU time scales linearly (optimally) with the number of mesh points N (i.e., by a factor of 4 per grid
refinement), and that both the number of nonlinear and linear (GMRES) iterations scale as O(N0). The
number of GMRES iterations reported is the total number, not the number per nonlinear iteration. The
number of linear iterations is smaller than that of nonlinear iterations owing to the fact that we employ
our MG preconditioner to provide an initial guess for GMRES solve, and often the initial guess is good
enough to satisfy the inexact Newton linear solve convergence tolerance, fk [Eq. (3)]. In fact, this suggests
that one could use the MG preconditioner as a solver in each Newton step, without mediation of GMRES.
However, we keep the GMRES step in anticipation of using the grid generation strategy outlined here in a
moving-grid context, where the grid equation will be coupled to a physical model of interest. A sample
128 · 128 grid obtained for the Gaussian annulus is shown in Fig. 2(a), where the front is clearly visible.
The Jacobian J of the mapping x(n) is depicted in logical space in Fig. 2(b); its maximum and minimum
values indicate that Jmax/Jmin � 10, as expected.
1
onvergence study of Eq. (11) for the Gaussian annulus error function

Newton iterations Total GMRES iterations CPU(s)

9 1 8
10 1 35

28 10 2 150
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Two-dimensional 128 · 128 grid obtained with Winslow�s variable diffusion method for the Gaussian annulus error function:
ual grid and (b) Jacobian J of the mapping.
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6.2. Grid alignment

Grid alignment to a vector field A is of interest when minimizing the numerical error in directional
derivative terms of the form A Æ $ is of the essence. This is the case in strongly anisotropic problems, such
as flow-dominated regimes [7] (where advection along the velocity field is the dominant transport mecha-
nism) and strongly magnetized plasmas [4] (where energy transport occurs preferentially along the magnetic
field B [46]). In such scenarios, the numerical treatment of the directional derivatives is delicate, since even
small numerical truncation errors in the parallel (to the vector field) derivative pollutes the perpendicular
dynamics.

Grid alignment can help in such problems by transforming an otherwise multidimensional representation
into an essentially one-dimensional one, where the discretization along the parallel direction can be performed
accurately. Previous authors have used various grid generation algorithms to achieve this goal [2,7], including
Harmonic maps [4,10]. In what follows, we propose a well-behaved formulation of the adaptivity tensor
suitable for alignment, and demonstrate the good performance of the fully implicit algorithm with a challeng-
ing vector field.

6.2.1. Formulation of the alignment tensor

In the logical representation, A Æ $ = Aio/oni, with Ai = A Æ $ni the contravariant component of A. Assume
that n1 is the coordinate chosen for alignment. Then, one-dimensionalizing the problem in 2D is equivalent to
maximizing A1 (which is in turn equivalent to minimizing A · $n1) while minimizing A2. This suggests the
following grid energy density (with the integral energy principle to be formed according to Eq. (5)):
eðn; xÞ ¼ 1
2
½ðA�rn1Þ2 þ ðA � rn2Þ2�. ð12Þ
This is equivalent to that proposed by Brackbill in [4]:
eðn; xÞ ¼ 1
2
½ðA�rn1Þ2 þ ðB�rn2Þ2�;
when noting that, in [4], A ¼ ẑ�rw and B = $w, and therefore (B · $n2)2 = (A Æ $n2)2. When we cast Eq.
(12) in the form of Eq. (4), we find:
p
$

? ¼ A2 I
$
�AA; p

$
k ¼ AA;
where p
$
? corresponds to the n1 equation, and p

$
k to the n2 equation. Note that p

$
? þ p

$
k ¼ A2 I

$
, where A = jAj.

However, the previous approach has a fundamental limitation, namely, that one has to choose the align-
ment coordinate a priori. This is not advantageous when the topology of the vector field A is complex,
since the convenience of a given coordinate for alignment is region-dependent (and regularity constraints
on the grid result in ‘‘transition’’ regions where no coordinate is perfectly aligned). It is best to follow
[10], where it is shown that the eigenvectors of p

$
can be used to determine the alignment directions.

Accordingly, we pose a grid energy density that attempts to minimize all contravariant components of
A, in the following fashion:
eðnÞ ¼ 1
2
½ðA � rn1Þ2 þ ðA � rn2Þ2�. ð13Þ
The resulting alignment metric p
$ ¼ AA has the alignment vector A and its perpendicular vector A^ as eigen-

vectors, but it does not constrain which component Ai to minimize (the algorithm will select this in a manner
compatible with the local vector topology and the boundary conditions). However, as it stands, the adaptivity
metric p

$ ¼ AA is unsuitable for two reasons. Firstly, the tensor AA is singular everywhere (its determinant is
zero). And secondly, in complex topologies, A will have null points (where A = 0), in the neighborhood of
which A changes direction sharply. The latter is also a robustness issue, as it will most likely cause convergence
difficulties as the solver tries to accommodate the topological complexity around null points.

These two issues can be resolved by considering the following regularized adaptivity tensor:
p
$ ¼ a I

$
þð1� aÞ A

A0

� �2

½ð1� �Þaaþ �ðI � aaÞ�; ð14Þ
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where a = A/A, A0 is a normalization constant, a 2 [0,1] regularizes the metric at null points, and � 2 [0,1]

determines the relative contribution of p
$
? and p

$
k.The eigenvalues of p

$
are k? ¼ aþ ð1� aÞ� A

A0

� �2

¼
a 1þ A

A�

	 
2h i
with eigenvector A^, and kk ¼ aþ ð1� aÞð1� �Þ A

A0

� �2

¼ a 1þ ð1��Þ
�

A
A�

	 
2h i
with eigenvector A.

The parameter A� ¼ A0

ffiffiffiffiffiffiffiffiffiffi
a

ð1�aÞ�

q
provides a threshold for the magnitude of A that separates neighborhoods of

null points from the rest of the domain.Note that, by construction, k^,i ! a when A! 0, which prevents prob-

lems around null points. It should be noted that, according to Eq.(5), Eq.(14) is affected by
ffiffiffi
p

p ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det½p$�

q
to

form a proper Harmonic map. In 2D, this correction results in det½ ffiffiffi
p

p
p
$� ¼ 1, which in turn implies that the

eigenvalues of P
$
¼ ffiffiffi

p
p

p
$
are k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kk=k?

p
and k2 = 1/k1, where
k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1��Þ

�
A
A�

	 
2
1þ A

A�

	 
2
vuut . ð15Þ
Note that a only affects the value of the threshold A*, and that � determines most of the properties of the grid
(in practice, as discussed below, � provides an ‘‘alignment limit,’’ the equivalent of a refinement limit for
alignment). We now consider two limits for this equation. In the limit A = 0 (null points), k1,2 = 1, i.e., the
identity tensor is recovered, and no alignment is enforced – as desired. In the opposite limit A 	 A*,

k1 !
ffiffiffiffiffiffi
1��
�

q
. Following [10], the behavior of the grid in this limit and in the transition region (where

A � A*) depends on the rate of change of k21 along its principal direction, dk21=dA, which for constant � reads
dk21
dA

¼ 2A

A2
0

1� a
a

� �
ð1� 2�Þ

1þ A
A�

	 
2h i2 . ð16Þ
The behavior of the grid in transition regions (where A � A*) will depend on the magnitude and sign of the
derivative in Eq. (16). The magnitude is essentially determined by A0 and a. The sign, however, depends on
whether � 6 1/2 (recall that the identity is recovered for � = 1/2, which enforces no alignment), and will deter-
mine whether the grid will concentrate or rarefy in these regions [10] (concentration is expected for dk1/dA < 0,
and rarefaction otherwise). The parameter � also determines which alignment tensor, p

$
k or p

$
?, is weighed

favorably in Eq. (14), and hence one should expect alignment with A for � < 1/2, and with A^ for � > 1/2.
Significant alignment is only achieved for � values well separated from the 1/2 threshold, as the identity tensor
is recovered when � = 1/2. In practice, one should choose � � 1/4 or 3/4 to achieve some measure of alignment
without sacrificing resolution. In this study, unless otherwise specified, we employ a = 0.05, A0 = 0.5max[|A|],
and � = 0.22.

If grid adaptation is desired in addition to alignment, Eq. (16) suggests that one could use arbitrary func-
tions �(A) 2 [0,1] to achieve a desired grid adaptation pattern. Alternatively, one could envision a generalized
adaptivity tensor:
p
$ ¼ a I

$
þð1� aÞf ðAÞ½ð1� �Þaaþ �ðI � aaÞ�;
where f(A ! 0)! 0 for robustness in the neighborhood of null points. Exploring this issue any further, how-
ever, is beyond the scope of the present study.

6.2.2. Alignment test case: double-vortex equilibrium

We test the alignment capabilities of the alignment tensor formulated above, as well as the performance of
the nonlinear solver, with an ideal 2D MHD equilibrium, given by the poloidal flux function [47]:
wðr; hÞ ¼
2

kJ0ðkÞ J 1ðkrÞ cosðhÞ; r < 1;

r � 1
r

� �
cosðhÞ; r P 1;

(

with r, h the cylindrical coordinates, J0 and J1 are Bessel functions of the first kind, and J1(k) = 0. The domain
considered is Cartesian, with �2 < x,y < 2. The magnetic field, which is the alignment vector field, is obtained
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from the poloidal flux as B = z · $w. The double vortex problem has been chosen for its topological complex-
ity, since it features both X-points and O-points (as is evident in Fig. 3).

The solver performance on this problem is presented in Table 2. Overall, the algorithm behaves simi-
larly to the adaptive grid case. There is some increase of the nonlinear iterations with mesh refinement due
to the very nonlinear nature of the equations in the alignment case, but the number of linear iterations
remains constant. The CPU scaling remains essentially optimal, with a multiplication factor of 4–5 per
grid refinement. We should point out, however, that the behavior of the nonlinear solver is strongly
dependent on the value of �, and significant slowdown of the Newton convergence is observed for �[
0.15.

A sample 128 · 128 grid obtained with the double-vortex configuration is depicted in Fig. 4. Notice that the
mesh is essentially uniform except in the neighborhood of the null point (O-point), were it is significantly rar-
efied (as expected for � < 1/2, since dk21=dA > 0). To measure the quality of the grid alignment, we define the
alignment figure-of-merit g as:
Table
Grid c

Grid

32 · 32
64 · 64
128 · 1
g ¼ ðB1Þ2

ðB1Þ2 þ ðB2Þ2
.

This figure of merit quantitatively measures how one-dimensional B Æ $ has become owing to the grid
alignment: the problem is effectively one dimensional when g � 1 or g � 0. Fig. 5 shows the regions delim-
ited by g < 0.1 and g > 0.9 before and after alignment. The transition region 0.1 < g < 0.9 has substantially
shrunk in the aligned case, demonstrating that the aligning algorithm successfully improves on a uniform
grid.

The effect of the parameter � on the solution is demonstrated in Fig. 6, where solutions for � = 0.17, 0.25,
0.45, 0.75 are plotted. Clearly, the grid aligns with A for � < 1/2, with A^ for � > 1/2, and no alignment occurs
for � � 1/2. Notice the lack of resolution around the O-point regions for � = 0.15, and the grid concentration
in the same regions for � = 0.75, as expected from the analysis in the previous section.
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Fig. 3. Plot of the double-vortex poloidal flux function (see text).

2
onvergence study of the alignment IBE for the double-vortex equilibrium

Newton iterations Total GMRES iterations CPU(s)

10 1 11
11 1 50

28 15 1 273
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Fig. 4. Sample 128 · 128 grid obtained by aligning to the double-vortex field configuration.
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Fig. 5. Quantitative measure of the degree of one-dimensionality achieved by the grid alignment algorithm. The grid is essentially one-
dimensional for regions g < 0.1 and g > 0.9. The aligned grid has succeeded in significantly reducing the area of the transition region
(0.1 < g < 0.9).
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Fig. 6. Effect of various values of the parameter � on the grid topology for 32 · 32 grids.
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7. Conclusion

We have presented a fully nonlinear solver strategy for the extremely nonlinear grid generation equation
obtained from Harmonic map theory. The advantage of Harmonic maps is that their existence and uniqueness
is guaranteed under certain conditions, and that the final grid is parametrization-independent. The Beltrami
grid generation equation, which satisfies the conditions of the HSY theorem, produces Harmonic maps, and
therefore its solvability is guaranteed under certain conditions.

The fundamental contributions of this paper are as follows. Firstly, we have derived a well-behaved dis-
crete inverse Beltrami equation (IBE) that is block-diagonally dominant and hence amenable to a multigrid
treatment (i.e., it possesses the smoothing property). Secondly, we have based our nonlinear solver strategy on
Newton–Krylov methods, using multigrid in the preconditioner stage. The multigrid preconditioner is so
effective that very few Krylov iterations are needed. Furthermore, it produces bounded linear and nonlinear
iteration count, with virtually no scaling under grid refinement, and produces CPU times that scale linearly
with the number of unknowns. Thirdly, we have demonstrated the effectiveness of the solver with challenging
adaptive and alignment examples. Such effectiveness opens the possibility of a fully nonlinear, coupled solu-
tion of moving grid strategies, where the physics and grid evolution equations are advanced simultaneously.
And finally, we have described an effective, robust, grid alignment approach for arbitrary vector fields.

The demonstration of the algorithm proposed here has been done in a serial fashion. We do not envision
any fundamental limitation for its parallelization, since Beltrami�s equation is elliptic in nature (and therefore
can be treated similarly to other elliptic problems as far as parallelization is concerned). Modern parallel tool-
kits such as PETSc [48] provide all the ingredients required, namely, parallel Newton–Krylov drivers and par-
allel multigrid capabilities.
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